Жанр: Математика
В монографии рассматривается ряд фундаментальных вопросов, связанных с нелинейной динамикой и хаосом. В частности, даны новые определения инвариантного хаотического множества динамической системы и хаотического аттрактора. Предлагаемые здесь определения позволяют обнаружить новый тип хаотического поведения, реализующийся в некомпактном и бесконечномерном случае, – так называемый турбулентный хаос. Содержательность указанного феномена иллюстрируется на конкретном примере, допускающем строгий математический анализ. Среди других тем, затронутых в данной книге, следует отметить вопрос о математических аспектах теории развития турбулентности по Ландау. А именно, реализуемость сценария Ландау в обобщенном его варианте иллюстрируется на ряде конкретных примеров из различных областей естествознания. Изучаются также некоторые другие типовые ситуации, когда при изменении управляющего параметра в системе возникает хаотический аттрактор или сосуществует достаточно много различных хаотических аттракторов (хаотическая буферность). Например, предлагается новый способ учета редких катастрофических событий в системах со сложным поведением, а также новый подход к проектированию генераторов хаотических колебаний. Для студентов старших курсов, аспирантов математических и физических факультетов университетов, специалистов по прикладной математике, теории колебаний, нелинейной динамике и хаосу. Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 12-01-07106
Жанр: Физика
В монографии предпринимается попытка создания единой теории диссипативных структур Тьюринга–Пригожина для систем параболических и гиперболических уравнений с малой диффузией. Для этого развиваются специальные асимптотические методы исследования проблем существования и устойчивости высокомодовых стационарных режимов в сингулярно возмущенных системах, позволяющие получить весьма тонкие утверждения о неограниченном росте количества устойчивых диссипативных структур (как стационарных, так и периодических по времени) при уменьшении коэффициентов диффузии и при фиксированных прочих параметрах. Вырабатываются общие представления о характере автоволновых процессов в нелинейных средах с малой диффузией на основе систематического анализа феномена буферности, высокомодовых аттракторов и диффузионного хаоса. Рассматриваются приложения из радиофизики, механики, экологии, нелинейной оптики и теории горения. Для студентов старших курсов, аспирантов математических и физических факультетов университетов, специалистов по прикладной математике, теории колебаний, нелинейной динамике.
Жанр: Учебная литература
Сборник задач соответствует программе курса математического анализа для студентов механико-математических и математических факультетов университетов, педагогических и технических вузов. Он может использоваться на семинарских занятиях по математическому анализу и для самостоятельной работы студентов. Пособие содержит широкий круг упражнений по основным темам курса, представлена большая подборка теоретических задач. Изложение каждой темы предваряется определениями и формулировками основных теорем, а также примерами решения задач от типовых упражнений до заданий повышенного уровня сложности.
В томе 1 рассматриваются дифференциальное и интегральное исчисление функций одной переменной, а также дифференциальное исчисление функций нескольких переменных.
В книге обобщён и методически переработан опыт преподавания математического анализа на механико-математическом факультете МГУ имени М. В. Ломоносова за последние десятилетия.
Для студентов и преподавателей университетов, педагогических и технических вузов, а также лиц, изучающих математический анализ самостоятельно.
или Войдите