Жанр: Учебная литература
Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств Чебышева и законов больших чисел. Представлена без доказательства предельная теорема в форме теоремы Ляпунова. Выведена интегральная теорема Муавра—Лапласа. Для студентов, изучающих курс «Основы теории вероятностей и математической статистики».
Рассмотрены основные операции в векторной алгебре и их применение для решения типовых задач на плоскость и прямую в аналитической геометрии. Приведен пример решения домашнего задания по аналитической геометрии для студентов первого семестра МГТУ им. Н. Э Баумана.
Для студентов первого курса МГТУ им. Н. Э. Баумана всех специальностей.
Кратко раскрыты, пояснены и доказаны основные теоретические положения, излагаемые в лекциях по разделам математического анализа в первом семестре: элементы логики, теории множеств, теория пределов, дифференциальное исчисление и теория экстремума. Изложение материала завершается выводом формул скорости и ускорения материальной точки при плоском криволинейном движении. Это позволяет обосновать формулы, приводимые в курсе теоретической механики первого семестра.
Для студентов первого курса всех специальностей.
или Войдите